Лекция 9. Наблюдаемость: метрики, логи, трассировки. Принципы SLO/SLA
Цель лекции: научиться проектировать наблюдаемость (observability) для smart‑систем и IoT‑платформ: какие метрики/логи/трассировки собирать, как связывать их между собой, и как формулировать SLI/SLO/SLA так, чтобы управлять надёжностью через измеримые цели и бюджеты ошибок.
1. Зачем нужна наблюдаемость
Наблюдаемость — это способность по выходным сигналам системы (телеметрия операционной работы) понимать, что происходит внутри, находить причины деградаций и предотвращать инциденты.

В IoT/Smart‑системах типичные проблемы:
• рост задержки доставки телеметрии (RTT, queueing)
• потери сообщений и повторы (loss, retries)
• “узкие места” в брокере/БД/обработчиках
• сбои обновлений, проблемы сертификатов/TLS
• нехватка ресурсов (CPU/RAM/disk IOPS)

Без наблюдаемости инженер видит “плохо работает”, но не видит “почему”.
2. Три столпа наблюдаемости
Классическая триада:
1) Метрики (Metrics) — числовые ряды во времени.
2) Логи (Logs) — события/сообщения с контекстом.
3) Трассировки (Traces) — путь одного запроса через несколько сервисов.

Современный подход: связать всё через общий контекст (trace_id, request_id, device_id, tenant_id).
3. Метрики: что измерять и как
Метрики отвечают на вопросы “что и насколько сильно изменилось”. Они дешёвые в хранении и удобны для алертов.

3.1 Типы метрик:
• Counter — счётчик событий (например, messages_total)
• Gauge — текущее значение (cpu_usage, queue_depth)
• Histogram/Summary — распределение (latency_seconds, payload_bytes)

3.2 Хорошая метрика имеет:
• чёткую единицу измерения (seconds, bytes, percent)
• понятный нейминг и лейблы (service, topic, region)
• ограниченное число лейблов (избегать “cardinality explosion”).
3.3 Метрики для IoT‑платформы (минимальный набор)
Устройства/шлюзы:
• uplink_messages_total, uplink_errors_total
• rtt_ms_hist, packet_loss_rate
• buffer_fill_ratio, reconnects_total

Брокер сообщений (MQTT/Kafka и т.п.):
• publish_total, subscribe_total
• dropped_messages_total
• queue_depth, consumer_lag
• auth_fail_total, tls_handshake_fail_total

Сервисы обработки:
• request_rate (RPS), error_rate, latency (p50/p95/p99)
• retries_total, timeouts_total
• backlog_depth (очереди задач)

БД/хранилище:
• write_latency, read_latency
• connections, locks, iops
• disk_used_percent, cache_hit_ratio
3.4 Правило “4 золотых сигнала”
Для большинства сервисов достаточно начать с 4 сигналов:
• Latency — задержка (особенно p95/p99)
• Traffic — нагрузка (RPS, messages/sec)
• Errors — доля ошибок/таймаутов
• Saturation — близость к пределам ресурсов (CPU/RAM/queue/disk).

Это отличный базис для дашбордов и алертов.
4. Логи: структура, уровни и практики
Логи отвечают на вопрос “что именно случилось” и дают контекст для диагностики.

4.1 Практика: структурированные логи (JSON):
• timestamp, level, service
• message
• trace_id/request_id
• device_id/tenant_id
• error_code, latency_ms

4.2 Уровни логирования:
• ERROR — ошибка, требующая внимания
• WARN — подозрительное, но система работает
• INFO — ключевые события (start/stop, deploy, конфиги)
• DEBUG — детальная диагностика (включать ограниченно)

4.3 Частые ошибки:
• писать “человеческие” логи без полей → сложно искать
• логировать секреты/PII → риск утечек
• слишком много DEBUG на проде → стоимость и шум
5. Трассировки: как увидеть путь запроса
Трассировка (distributed tracing) показывает путь одного запроса (span‑ы) через несколько сервисов.

5.1 Когда трассировки особенно полезны:
• микросервисный пайплайн: gateway → broker → ingestion → processing → DB → API
• поиск “где съедается время” при росте p95/p99
• анализ таймаутов, ретраев, каскадных сбоев

5.2 Базовые понятия:
• Trace — цепочка span‑ов
• Span — участок работы (HTTP запрос, запрос к БД, обработка пакета)
• Context propagation — перенос trace_id между сервисами

Практика: использовать OpenTelemetry и экспортировать в Jaeger/Tempo/Zipkin.
5.3 Корреляция: метрики ↔ логи ↔ трассы
Цель — по алерту (метрика) быстро найти:
1) какие сервисы деградировали (дашборд)
2) какие ошибки появились (логи)
3) где задержка (трасса)

Ключ — единые идентификаторы: trace_id + request_id + device_id. В логах обязателен trace_id, чтобы “кликать” из логов в трассу.
6. Архитектура наблюдаемости (типовой стек)
Один из распространённых стеков:
• Метрики: Prometheus (scrape) → Grafana (дашборды)
• Логи: Loki или ELK/EFK (Elasticsearch/OpenSearch + FluentBit)
• Трассы: OpenTelemetry → Jaeger/Tempo

На edge часто делают буферизацию/агрегацию и отправляют данные пакетами в облако (чтобы экономить трафик и энергию).
7. Алертинг: принципы и “шум”
Хороший алерт:
• привязан к пользовательской ценности (SLO/SLI)
• имеет порог и окно времени (например, p95 > 300 ms 10 минут)
• содержит контекст: сервис, регион, ссылки на дашборды

Избегайте “шумных” алертов:
• на каждую мелочь
• без привязки к последствиям
• без действий (runbook отсутствует).

Практика: использовать “burn rate” алерты по бюджету ошибок (см. SLO).
8. SLI/SLO/SLA: определения и смысл
SLI (Service Level Indicator) — измеримая метрика качества сервиса.
Примеры SLI:
• доля успешных доставок телеметрии
• p95 задержки обработки событий
• доступность API (uptime)

SLO (Service Level Objective) — целевое значение SLI за период.
Пример SLO:
• “успешная доставка телеметрии ≥ 99.5% за 30 дней”
• “p95 latency API ≤ 300 ms за 7 дней”

SLA (Service Level Agreement) — договорное обязательство (часто с компенсациями), обычно проще и “мягче”, чем внутренний SLO.
SLO управляет инженерией, SLA управляет ожиданиями клиентов.
8.1 Бюджет ошибок (Error Budget)
Если SLO = 99.9% успешности за 30 дней, то бюджет ошибок = 0.1%.
Инженерный смысл:
• пока бюджет ошибок не исчерпан — можно активнее выкатывать изменения (скорость)
• если бюджет “сгорает” — приоритет на надёжность, заморозка рискованных релизов.

Это формализует баланс “скорость разработки ↔ стабильность”.
8.2 Пример SLO для IoT (практично)
1) Delivery SLO:
• SLI: ratio = delivered_messages / published_messages
• SLO: ratio ≥ 99.5% за 30 дней

2) Latency SLO:
• SLI: p95 end‑to‑end latency (device → DB)
• SLO: p95 ≤ 2.0 секунды за 7 дней

3) Availability SLO (API):
• SLI: доля 2xx/3xx ответов
• SLO: ≥ 99.9% за 30 дней
9. Дашборды: как “правильно”
Хороший дашборд отвечает на 3 уровня:
• Уровень 1 (Health): SLI/SLO, ошибки, p95/p99, нагрузка
• Уровень 2 (Drill‑down): по сервисам/регионам/топикам/тенантам
• Уровень 3 (Debug): ресурсы (CPU/RAM/disk), очереди, логи, трассы

Практика: на дашборде всегда показывать период (24h/7d/30d) и версию релиза.
10. Инциденты и постмортем: минимум процесса
Наблюдаемость работает лучше в связке с процессом:
• On‑call: кто отвечает, какие каналы связи
• Runbooks: что делать при типовых алертах
• Postmortem (без поиска виноватых): причина, таймлайн, действия по предотвращению

Метрики “MTTA/MTTR” (время обнаружения/восстановления) — важные KPI надёжности.
11. Итоги
• Метрики — быстрые сигналы и алерты; начинайте с 4 золотых сигналов.
• Логи — контекст; используйте структурированные логи и не допускайте утечек секретов.
• Трассы — путь запроса и поиск узких мест в микросервисах.
• SLI/SLO/SLA дают измеримый “контракт качества”; error budget управляет балансом скорости и надёжности.
Самопроверка (10 вопросов)
• Чем наблюдаемость отличается от “мониторинга” в узком смысле?
• Какие три столпа наблюдаемости и что каждый из них даёт?
• Что такое “cardinality explosion” в метриках и почему это опасно?
• Какие 4 золотых сигнала вы бы построили для ingestion‑сервиса?
• Какие поля должны быть в структурированном логе для связи с трассой?
• В каких случаях трассировки дают максимальную пользу?
• Определите SLI, SLO, SLA своими словами и приведите пример для IoT.
• Что такое error budget и как он влияет на релизы?
• Какой алерт вы поставите на “сгорание бюджета” (идея burn rate)?
• Как организовать дашборд, чтобы он помогал и on‑call, и разработчикам?
